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THE NONLINEAR STABILITY OF
A FREE SHEAR LAYER IN
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The nonlinear evolution of weakly amplified waves in a hyperbolic tangent free shear
layer is described for spatially and temporally growing waves when the shear layer
Reynolds number is large and the critical layer viscous.

An artificial body force is introduced in order to keep the mean flow parallel. Jump
conditions on the perturbation velocity and mean vorticity are derived across the
critical layer by applying the method of matched asymptotic expansions and it is
shown that viscous effects outside the critical layer have to be taken into account in
order to obtain a uniformly valid solution. Consequently the true neutral wavenumber
and frequency are lower than their inviscid counterparts. When only the harmonic

< fluctuations are considered, it is known that the Landau constant is negative so that
P linearly amplified disturbances reach an equilibrium amplitude. It is shown that
O H when the mean flow distortion generated by Reynolds stresses is also included, the
[ g Landau constant becomes positive. Thus, in both the spatial and temporal case, linearly
O amplified waves are further destabilized and damped waves are unstable above a
T O threshold amplitude.
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644 P. HUERRE

1. INTRODUCTION

When a free shear layer is excited by a wave like disturbance of suitable frequency or wavenumber,
the amplitude of the wave increases exponentially according to well-established linear stability
considerations. This exponential increase clearly restricts the domain of validity of linear theory
to very short times and distances. In order to overcome this difficulty, Stuart (1960) and Watson
(1960) proposed a systematic expansion scheme whereby the nonlinear stability of parallel shear
flows could be investigated for weakly amplified waves. This theory has been particularly
successful in describing, for instance, the early evolution of Taylor vortices in the flow between
concentric, rotating circular cylinders. It has also been applied to a variety of situations (plane
Poiseuille flow, boundary layers. . . ) where transition from laminar to turbulent flow takes place.
The aim of this paper is to consider the particular case of a parallel free shear layer with a hyper-
bolic tangent velocity profile at high Reynolds numbers.

In carrying out such a study, it is hoped to gain further insight not only in the transition process
of free shear layers, as studied experimentally by Freymuth (1966) and Miksad (1972), but also
in the mechanisms governing the development of orderly structures in fully turbulent flows. As far
as transition is concerned, Miksad (1972) showed how nonlinear effects, characterized by the
appearance of harmonics and subharmonics, become important as soon as the amplitude of the
fluctuations reaches 2 %, of the maximum mean velocity. Even though Stuart’s work cannot be
expected to account for the appearance of subharmonic fluctuations, it provided a qualitatively
satisfactory description of the finite amplitude equilibrium process of the fundamental disturb-
ance. In the case of large-scale structures in turbulent flows, the jet-forcing experiments of
Crow & Champagne (1971) and Moore (1977) have clearly shown that the exciting disturbances
are amplified by the jet as if they were traveling in a fictitious laminar flow with the same velocity
profile as the real flow, the fine scale turbulence merely contributing to eddy damping. However,
as pointed out by Moore (1977), nonlinearities become significant for forcing levels as low as
0.1 9%, of the jet exit velocity. For the same reasons, the maximum value of the amplitude ‘saturates’
at higher forcing levels: whereas, in Crow & Champagne’s experiment the total gain (i.e. the
ratio of the maximum amplitude to the initial forcing amplitude) is 18 at 1 %, forcing level, it is
only 5 at 4 9, forcing level.

Linear stability calculations such as those of Michalke (1971) and Crighton & Gaster (1976)
have been very successful in predicting the value of the natural frequency associated with
transitional as well as turbulent free shear flows. They have shown, in particular, that the
experimentally measured dominant frequency is indeed the frequency of the most amplified
wave as given by linear stability theory. In the case of the tanh y velocity profile and for spatially
growing disturbances, the most unstable frequency suitably non-dimensionalized was found by
Michalke (1965) to be 0.414. Ideally one would attempt to follow the growth of the linearly most
unstable wave in the finite-amplitude régime, and thus obtain its maximum amplitude. However,
attractive this approach may be, it is presently not amenable to theoretical treatment. In this
study, we therefore restrict our attention to weakly amplified waves close to the neutral wave-
number or frequency. Stuart (1967) has shown that this type of analysis is valid only in the
immediate vicinity of the neutral point. Hence, the present results cannot be freely extended to
the most amplified wave and a direct comparison between theory and experiment it not justified
unless the free shear layer is excited at a frequency sufficiently close to neutral stability.

From a theoretical point of view, the present investigation is closely related to the temporal
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NONLINEAR STABILITY OF FREE SHEAR LAYERS 645

nonlinear stability analysis of a parallel free shear layer carried out by Schade (1964). His
approach relies on three basic assumptions:

(1) the amplitude of the fluctuations is small of order e.

(2) the Reynolds number R scaled on the shear layer thickness is large.

(3) the waves are weakly amplified, in the sense that one considers wavenumbers in the vicinity
of the neutral wavenumber. This restriction is essential if one is to be able to balance linear
amplification by nonlinear effects.

If the real wavenumber K is within O(e?) of the neutral wavenumber K,, and such that

K = K, — AKe? (1.1)

Schade’s result can be expressed in terms of an evolution equation for the amplitude 4 of the

fluctuations:

d4 2
=2 ar-14 4 (1.2

where T, is a suitably defined slow time scale. Since the Landau constant multiplying the non-
linear term is negative, this evolution implies the existence of a finite equilibrium amplitude for
weakly amplified waves below the neutral wavenumber. Such a conclusion is in qualitative
agreement with the experiments mentioned previously, and similar results have also been
obtained by Benney & Maslowe (1975) and Huerre (1977).

It is important to draw attention to some of the restrictive assumptions that have been
implicitly made in order to arrive at the evolution equation (1.2): in all these investigations a
logarithmic singularity occurs at the origin and, following a common practice in linear stability
theory, one chooses the branch of the logarithmic function which yields a —n phase shift as one
crosses the origin from below in the complex plane of the transverse coordinate y. Hence, one
assumes that the critical layer is viscous of thickness (KR)~%. However, viscous effects are entirely
neglected outside the critical layer. Moreover, the mean flow change induced by Reynolds
stresses is effectively taken to be zero so that the Landau constant in (1.2) only represents the
exchange of energy between the fundamental and the harmonic fluctuations.

More recent studies provide considerable insight on the problems raised by this ‘almost
inviscid’ approach. Benney & Bergeron (1969) showed how one could introduce nonlinear effects,
instead of viscous effects, in the critical layer, in order to ‘smooth out’ the singularity arising at
the critical point. Furthermore, by defining a Reynolds number in the critical layer R¢.1. = Reét
based on its thickness ¢2, Haberman (1972) was able to follow the increase of the phase shift from
— 7 tozero as R¢.1.changes from zero to infinity. This study emphasized the role of Rc 1. in providing
a measure of the respective magnitude of nonlinear and viscous effects in the critical layer,

From the investigations of Benney & Maslowe (1975) and Huerre (1977) which were more
specifically concerned with the nonlinear stability of the tanhy profile, it can also be concluded
that the evolution equation (1.2) for the amplitude function is R.1. dependent and becomes of
2nd order in time as Re.1. goes to infinity in the nonlinear critical layer régime. The Stuart—
Watson approach has also been applied to the tanh y profile by Maslowe (1977), for finite shear
layer Reynolds numbers, R, i.e. small Rc.1.. Maslowe calculated the part of the Landau constant
pertaining to the harmonic numerically and showed that it decreased with increasing Reynolds
number R. A rough estimate of the effect of Reynolds stresses indicated that mean flow distortion
might counteract this trend.

53-2
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646 P. HUERRE

A different approach has been proposed by Stuart (1967): instead of following the evolution of
disturbances in time or in the downstream direction, Stuart calculated the inviscid finite-ampli-
tude equilibrium state associated with the hyperbolic tangent profile. The resulting expansion
was found to be regular at the origin, and this method, except for subtle differences discussed in
the paper, led to a satisfactory agreement with Schade’s result.

Recently, Stewartson (1978) and Brown & Stewartson (1978) carried out a detailed investi-
gation of the dynamics of the critical layer as a weak Rossby wave is forced on a uniform shear for
small and large values of Rc.1.. The evolution of the wave was followed for all time and some of the
results which they obtained for a viscous critical layer will be discussed in § 5.

In this work, we limit ourselves to the question of the long time evolution of weakly amplified
free modal disturbances and we solely consider the case of a viscous critical layer as in Schade’s
paper. Consequently, the shear layer Reynolds number R will be large but of finite order with
respect to 1/¢ in order to ensure that Re.1. is small. As soon as this assumption is made, however,
viscosity cannot be neglected outside the critical layer. This is indeed a necessary prerequisite if
the method of matched asymptotic expansions is to be applied successfully to the flow in the
critical layer. The distortion of the mean flow will also be taken into account and it will be shown
that its contribution to the Landau constant does not lead to a finite amplitude equilibrium state.

Since R is not infinite, the tanh y velocity profile is not an exact solution of the basic flow
equations. As discussed in the conclusion, fundamental difficulties arise when one attempts to
relax the parallel flow assumption. In this investigation, we have chosen to introduce an artificial
body force in order to counteract the effect of viscous diffusion on the basic flow. Such a procedure
is not uncommon: Crow (1968) in his visco-elastic model of turbulence, used random body forces
to maintain turbulence against viscous dissipation. It must be emphasized that a body force was
bound to be implicitly present in all previous investigations concerning the linear and nonlinear
stability of the tanh y profile at large or finite Reynolds numbers. In this study we merely
introduce this body force explicitly. Thus, it should be made clear that comparison with earlier
work is legitimate.

Under these assumptions, we seek to describe the amplitude evolution of weakly amplified
waves as they grow in time or space. The basic equations are presented in §1 and the outer
expansion as well as the amplitude and mean flow distortion equations are partially derived in
§ 3, within the framework of the method of multiple scales. The goal of § 4 is to determine the
characteristics of the inner critical layer so as to relate the outer flows above and below the origin.
The problem has to be solved to O(¢s*) and we have tried to shield most details from the reader.
It was felt, however, that an outline of the calculations was necessary in order to derive the
amplitude equations in a rigorous manner. Section 5 contains a discussion of the main results of
the inner problem inasmuch as they affect the outer mean flow distortion and the velocity
fluctuations. Finally, the amplitude equations and mean flow equation are derived in §6 and
their physical meaning is discussed in the particular case of temporally and spatially growing
waves. We conclude the paper with some qualitative implications of this work to the question
of the general nonlinear evolution of instability waves in free shear flows.
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NONLINEAR STABILITY OF FREE SHEAR LAYERS 647

2. BAsIC EQUATIONS AND ASSUMPTIONS

The flow is assumed to be incompressible and two-dimensional, and governed by the two-
dimensional vorticity equation

0 1 1
el v7 2 — ZV2V2Y 4 SR
atV ¥+ J,(V2P, P) RV \% ‘.IJ+RV a (2.1)
where Jy( f, g) is the Jacobian operator
Y% %

The total stream function ¥ and the independent variables £, y, and ¢ have been non-dimen-
sionalized in terms of the velocity U, of the basic flow at y = + co0 and a typical length scale L of
the same order of magnitude as the shear layer thickness. R is the Reynolds number U,v/L based
on the above velocity and length scales and on the kinematic viscosity v, and it is assumed to be
large. The function a(£, y) is the z component of a vector potential associated with a body force

f = .1 (:d_g e, — 6_(1 e
T R\oy ¢t otv)
to be determined later in the course of the analysis.

In a standard fashion the total stream function is decomposed into a basic stream function
¥ (y) and a perturbation stream function ¥ so that

(& y,t) = () +ev (&0, 1), (2.3)

where € is a small parameter characterizing the magnitude of the fluctuations. In all the analysis,
it is understood that ¥ (y) = In (coshy) is the basic stream function associated with the velocity
profile U(y) = tanhy.

In order to pursue the analysis, one needs to specify the order of magnitude of 1 /R as compared
to €. Since the purpose of this investigation is to consider the particular situation where the
critical layer is viscous, any scaling for 1/R must be such that the Reynolds number in the critical
layer Re?, based on its thickness e? and the magnitude of the perturbation velocity e, is smaller
than unity.

For convenience, it will be assumed that
1/R = 2%e, A= 0(1), (2.4)

in which case the Reynolds number in the critical layer is of order e#. This particular choice of
scaling allows any viscous corrections in the outer flow to occur at the same order as nonlinear
terms. A smaller value of R (with respect to 1/e¢) would merely enhance viscous effects in the
outer flow at the expense of nonlinear interactions. The above scaling has the advantage of
‘maximizing’ nonlinear interactions without destroying the viscous character of the critical
layer.

The requirement that the critical layer be viscous has two main consequences:

First, the Reynolds number R cannot be made as large as possible so as to keep the basic flow
parallel, and we have introduced a body force in order to enforce this condition. Secondly, in
contrast to the implicit assumption of Schade (1964) and Huerre (1977), the effect of viscosity on
the instability wave is non negligible outside the critical layer, and we will take it into account in
the present study.
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648 P.HUERRE

Before proceeding to the weakly nonlinear case, it is probably useful to recall the main results
of linear stability theory for the hyperbolic tangent free shear layer, as carried out by Betchov &
Szewczyk (1963), Michalke (1964) and Tatsumi ¢t al. (1964). For temporally growing waves, the
real part of the phase velocity is identically zero, and its imaginary part ¢, is a function of the
wavenumber K as shown in figure 1. As the Reynolds number decreases, the unstable range of
wavenumbers becomes narrower, but there is no critical Reynolds number below which the
shear layer is stable. For infinite Reynolds number, the neutral wavenumber separating the
stable range from the unstable range is unity, and the associated eigenfunction is known explicitly

and given by é(y) = sechy. (2.5)
0.2\“1 T T T T 1
R=o
40
0.15¢+ -
30
20
0.10 -
10
0.5 5 -
R=1
0 1 1 1
0.2 0.4 0.6 0.8 1.0
alL
=0.05p -
-0.10~ -
—0.124 i { | | 1

Ficure 1. Amplification rate K¢; against K for different values of the Reynolds number R
(from Betchov & Szewczyk 1963; courtesy of Physics of Fluids).

Following Schade (1964) and Benney & Maslowe (1975), we take advantage of this feature and
investigate the nonlinear behaviour of a wavetrain of wavenumber unity whose amplitude is
slowly modulated in space and time. Equivalently, we seek to determine the nonlinear regime
of weakly amplified modes whose wavenumber (for time growing waves) or frequency (for space
growing waves) is close to the neutral wavenumber or neutral frequency. It is convenient to use
the formalism of the method of multiple scales, as described in Nayfeh (1973), and introduce a set
of slow time and space scales

Ty=¢t; To=¢% X, =¢eb X,=¢% (2.6)
so that partial derivatives in ¢ and £ become
0 0 9, ,0 02 2 o  , 0
6}‘9'&4'6’6—7—1‘*‘6 a];, 6§_>©§+66X1+6 *6")?; (2.7)
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NON LINEAR STABILITY OF FREE SHEAR LAYERS 649

In contrast with previous weakly nonlinear studies, two sets of slow scales are needed in this
instance. From a formal point of view, they are introduced in order to prevent the appearance
of secular terms in the higher order approximations, namely the O(e?) and O(e®) solutions.
The scales T and X, are effectively viscous scales which will account for the slight decrease in
amplification rate due to finite Reynolds number effects. The scales T, and X, are associated
with nonlinear interactions in the same fashion as in other weakly nonlinear investigations.

The perturbation stream function ¥ is then considered as a function of these slow scales and
expanded in powers of €

'ﬁ(y, ga t: Xia T;) = !”1(% g, ta Xi: T;.) -I-,67,02(_1/, g’ ta Xi: T;.) + 621”3(% ga t Xw 711,) * (2‘8)

Substitutions of (2.8) into the vorticity equation (2.1) leads to the equations determining
Y1, ¥, and ¥r5. The next section considers the resulting outer flow outside the critical layer and
derives the resulting amplitude and mean flow correction equations. Itis convenient to introduce
the following notations

WD) - s L =12, (2.9)
2,01 = (5+00) ) V- U ) 35, (2.10)
Ziy] = ( +U() )V?wﬁ ﬁ”(y)%%, i=1,2. (2.11)

3. OUTER PROBLEMS

First order problem. The governing equation for ¢, is
Zo[¥] = AU"(y) +2AV?a (3.1)

and one is immediately faced with the divergence of the basic flow due to viscosity which was
mentioned earlier. We shall choose the body force so that the right-hand side of (3.1) vanishes,
and take ,

a=-U'(y) (3.2)
or f=-2U"(y)e,. (3.3)

For waves periodic in £, equation (3.1) then becomes the Rayleigh equation and we shall take as
the solution to the first order problem the neutral wave

Y, = sechyRe A(X,, T;) ei¢ (3.4)

where A(X;, T;) is an amplitude function to be determined in the second and third order problems.
Second order problem. The corresponding equation for ¥, is

Lol = -2(5+ U0) ) s~ A HAVVH S V) (39)

and suggests a solution of the form

¢2 = ¢50) (% Xi: T;,) + RC @él) (% Xi) 711,) eig + Re Qg) (% Xi: T;) e2i£' (3'6)
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The second term in (3.6) represents a modification to the fundamental and satisfies the following

equation,
. o4 . 04 .
LO[PM] = —2isechy == — 2isech®y cothy | == + 414 ) + 24idsech®y tanhyd,  (3.7)
X, o,
¢ ( u (y))
where LO[P] = =L —{n2+ , n=1,2,.... 3.8
91 = 55— (m+ ) ¢ (3.5)

In such cases it is customary to enforce an orthogonality condition of the form

P, X T daly) dy = 0, (3.9)

— 00

where Q" (y, X;, T;) is the forcing term and ¢,(y) is the eigenfunction (in this case sechy) asso-

ciated with the homogeneous equation
LO[¢,] = 0. (3.10)

The forcing term of equation (3.7) exhibits a singularity in 1/y so that the interpretation of the
integral is ambiguous. In similar instances, Schade (1964) and Huerre (1977) used well known
results of linear stability theory and integrated (3.9) below the singularity y = 0. Thus, they
avoided any detailed consideration of the critical layer around the origin and assumed that, when
the critical layer is viscous it is legitimate to choose for the logarithm arising in the integration of
(3.9), the branch cut which goes from 0 to +ico. This argument will not be used here and the
second order outer problem will be solved on each side of the critical layer, the jump relations
being determined in § 4 by matching across the origin. Hence, by a straightforward application
of the method of variation of parameters, the solution of equation (3.7) is found to be

oY (y, X;, T;) = —i[(ysechy +sinhy) In [tanh y| —sechy y,(tanhy)] [04/0T; + 4AA4]
—itanhy sinhy 04 /0X; — 6iAsechy tanh yA4 +afP* (X, T;) sechy
+b§9%(X,, T;) (y sechy +sinh y) (3.11)

where a§"*(X,, T;) and b{P*(X,, T;) are 2 unknown ‘constants’ multiplying the complementary
solutions of (3.7), the + and — superscript corresponding to the outer region above and below

y = 0 respectively. y,(x) is the inverse hyperbolic tangent integral defined by

o(%) = f zarta;nh Lae, (3.12)
0

In order for @§V to vanish exponentially at + oo, one must have

WO+(X, T) = — bO~(X,, T7) = 104/0X, (3.13)
and the first amplitude equation describing the variations of 4 with X; and 7] can be written as

2104/0X, = bP+(X,, T;) — bV~ (X,, T7). (3.14)
The first harmonic in (3.6) which is generated by nonlinear interactions was already computed
by Schade (1964) and is given by

DR (y, X;, T;) = —Lsechty A2 (3.15)

Finally the mean flow correction @ (y, X;, 7;) is unknown and will be determined by the third
order problem.


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s
N\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NONLINEAR STABILITY OF FREE SHEAR LAYERS 651

' Third order problem. The governing equation is

L5) = =2 (5+ U0) 57) s — Ll + AV [ V] +- 1, Vo]

0 . 0\ (O Yy 2V
~ L[] - (a:* Uly) a—g) (axg‘ +25 az}z) +gex,

~2 (s + U0) 57 s+ il V01 + 245 v e | (3.16)

The forcing term in this equation contains expressions which are independent of the £ coordi-
nate, and in order to prevent the appearance of secular terms in ¥, one must ensure that they
are identically zero, which provides the equation for the mean flow correction

d ROY DY PP
(ﬁ;"'U( )ax) y? —2tU (y) X, —-A oyt

2
= Lsech?y(3 + coth?y) ( |4]* + 82 |A|2) +sechy tanhya 14]

0X;
—12/\sech4y(5tanh2y—1 ) 4] (3.17)
A first integral is immediately found in the form
0\ oo opP asq)éo)
(87"1+U()6X) U W x5 l

0]4|? 0]4|2

=1 4 1 4,000

1sech ycothy( o, +8A|4| ) Isechty ox,
+12Asech®y tanhy |4|? —o* (X;, T;). (3.18)

As explicitly shown in appendix A, this relation is precisely the equation of motion pertaining
to the mean flow change, the first three terms on the right-hand side of (3.18) representing the
action of Reynolds stresses. Furthermore, the constant of integration a*(X;, T;) is then readily
identified as the change in mean pressure gradient at y = + 0o so that the mean flow equation
can be cast in the final form

0 . 0\0BY ., DY  PPW
[+ U0 5z) o~ U6 55— A g0

2
= —}sechty cothy(ag;l,' +8/\|Al) isech“yael):i,I
1

oP{*
X,
The form of the £ dependent terms on the right-hand side of (3.16) suggests a third order
solution given by
U5 = B0y, X, To) +Re 00 (y, X;, T)) e + Re P (y, X, T;) e* + Re 0P (y, X;, T;)
(3.20)

+12Asech?y tanhy |4|2— (3.19)

The correction to the fundamental @§ is then found to satisfy the following equation
LO[PP] = Q4 (y, X;, Tr). (3.21)

Calculations become very extensive at this point of the analysis and the reader is referred to
appendix B for a detailed expression of the forcing term Q§(y, X;, T;). It is important to note,
however, that Q" has a 1/y* singularity at the origin. Invoking an orthogonality condition of the

54 Vol. 293. A
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652 P.HUERRE

type (3.9) therefore becomes even more delicate than in the second order problem since the
integral does not exist as a Cauchy principal value. Nevertheless, a modified ‘solvability’ con-
dition can be derived from the application of the boundary conditions as suggested in similar
circumstances by Benney & Maslowe (1975) and by Redekopp (1977). The procedure is now
briefly explained in this particular case:

If §,(y) = sechy and ¢,(y) = ysechy +sinhy are the two complementary functions associated
with L®, the general solution of equation (3.21) formally becomes

P (y, X, T) = — f QO (1, Xos T) [$a(n) 0(9) — bo(1) Paly)] dn
a(IH(?/: 5 'L) ¢a() b:(il)i(y:Xi;Tji) ¢b(y)> (3'22)

where W is the Wronskian of ¢,(y) and ¢,(y), and a§P%, {1+ are unknown constants’. It can
be checked that Q' (y, X;,T;) ~ €™ as y -+ o0, so that in order for @ (y, X;,T;) to vanish
exponentially at infinity we must have

I(+00)—I(—o0) = W (b~ —b{P+), (3.23)
where I (y) is the indefinite integral

I(y) = f QP (1, X, T3) o) dy (3.24)

Hence, with the use of this modified solvability condition, the explicit determination of &
can be entirely avoided. Substitution of Q" (y, X;,T;) given in appendix B leads after some
calculations to the following amplitude equation

. aA 62A aA aA L aA \
"%‘IAIZA“E[B('FOO, X,,T;) — B(— oo, Xm, 7;)]A_5m(a;1>+_ag>~)

. . D . D
+HA(L+xs(1)) (B +007) +igz (@ F +af07) — g (a0 —af7)
1 1

(L 20(1)) g (O +007) = BP* 007, (3.25)

where the function y,(x) is the inverse hyperbolic tangent integral of third order defined by

(x) = f:’ﬁ@dt (3.26)
and the function B(y, X;, T;) is the indefinite integral
3¢H(0)
By, X, T;) = jysechzt cotht (a f?‘ +2se (:hzta%j ) dt. (3.27)

In the second order problem, the amplitude equation (3.14) was derived from the full solution for
@, The reader may immediately verify that the same result could have been obtained by
applying condition (3.24) to the forcing term Q¥ (y, X, T).

Finally, the correction to the first harmonic @ obeys the equation

LO[DP] = QP (y, X, Th), (3.28)
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where Q (y, X, T;) is written in detail in appendix B, and L® is the operator defined in (3.8)
with #n = 2. The second harmonic satisfies the equation

LO[PP] = —Esechby 43 (3.29)
and is perfectly regular at this order.

The outer analysis has so far enabled us to characterise the variations of the function 4(X,, T)
by two amplitude equations (3.14) and (3.25) and the distribution of @ (y, X;,T;) by the
equation of motion (3.19). However the study is far from complete because one does not know
the jump conditions which in particular determine 5"+ — 5"~ and b+ —b§"~. These are
expected to result from the inner analysis of the problem around y = 0, and from the subsequent
matching conditions with the outer flows on both sides of the critical layer. A first sign of the
irregularity of the outer expansion around y = 0, is given in the second order problem by the
presence of the 1/y singularity in Q" (see equation (3.7)) and the associated logarithmic
singularity in @§ (see equation (3.11)). In the third order problem, the forcing term Q§ is
singular in 1/y44, and by comparison with @V, one can estimate the thickness of the critical layer
to be O(e?). This is also the scaling of the transverse coordinate y which will yield a viscous
diffusion term and a mean flow correction term of equal order of magnitude in the vorticity
equation.

Before proceeding to the study of the critical layer, it is important to define the detailed
asymptotic behaviour around the origin of each term in the outer expansion so as to be able to
apply the matching principle at each order in the inner problem. The procedure is rather
tedious: a general form of the expansion is assumed and the coefficients are determined by
identification after substitution into the governing equations given in this section. For instance,
the mean flow correction @ (y, X;, T;) admits the following expansion

OO (y, X;, T,) ~ ad* +b(0):i:y+[ (0):I:+ (ag’;l +8/\|Alz) In ly|]

D(0)+ 2 0+ 0+
OPQE  10|4)* P+ af ]3+ as g 0% (3.30)

+E’X[ ox, Tiox, Tar, T ox,

where a®*, b®* and ¢+ are multiplicative constants associated with the complementary
functions of the mean flow equation (3.19). Similarily, the expansion for the distortion of the
first harmonic @ reads

04 04
P T 2 @+ @+ 2
PP (y, X, T;) ~ 4 (@T + 824 )y+a + [31) +1(aT + 1424 )ln ly|]y+ (3.31)

where a?* and b§2* are associated with the complementary functions cosh?y and sinh 2y + tanhy
of the operator L® in equation (3.28). Jump conditions pertaining to these quantities will also be
derived in the course of the inner study. All the other expansions do not involve the introduction
of any new parameters and the results have been gathered in a separate appendix C. One may
note that the outer expansion is only weakly singular so that the inner problem will have to be
pursued to relatively high order before the required jump conditions on 4§"*+ can be established.
The origin of this difficulty can be traced to the form of the 1st order solution. In the terminology
of Redekopp (1977), we are considering the nonlinear behaviour of a regular neutral mode, as
opposed to a singular neutral mode, and singularities only arise at higher order. The reader who
is not interested in the details of the inner problem may without difficulty avoid the next section
and directly proceed to § 5.
542
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4, THE INNER GRITICAL LAYER

The length scale of the inner region is O (e¥) and the transverse coordinate y is rescaled according

to the transformation
y = 6tY. (4.1)

It is also convenient to define the following inner operators

of 0g Of 0
Jxo[ S5 €] =%£’_%a_§’ (4.2)
of 0g Oof @ .
Jalhel = a§ 57" aJI;a)?’ t=1b% (4:3)
6 ¥

whereby the vorticity equation (2.1) expressed in terms of ¥*(7Y, §, X;, T;) becomes

Aa“![f* [62![’* 0 ory* [62'1’*

g
. * | — "k s *
0| e P ] {/\U' (@) +37 Tz +oo| g ¥ ] AL }

0£20Y2

R PYE d s
— * A )b =
| T ¥ o+ (qgrer A o)+ o o
P ewr agE
+2J*°['—agaXl’T ]+J*1[——-———ag2 ¥ ]‘“a_‘“_gaxlaw}e’“‘
A Pwx g g, .
+J*2[ a7 L ] {%gana){l*agzan"“agsaxl}e“‘ +0(ef).
(4.5)
Furthermore, the stream function is expanded in powers of ¢} to read
V(Y8 X, Th) = §V%t +yfe+yfet +yded + yfed +yfed + Yded + yded + Yfoe +
(4.6)

Terms of the form ¢?(In €)? will be formally included in ¥ and, whenever they arise, we will use
block-matching, thereby satisfying the criteria for a sound matching principle described by
Lesser & Crighton (1975).

Substitution of the above expansion into the vorticity equation (4.5) leads to a sequence of
inner problems which gradually become more and more tedious to solve. At each order the inner
solution is matched with the outer solution by comparing the outer expansion of the inner
expansion with the inner expansion of the outer expansion fory > 0Oandy < 0which are tabulated
in appendix C. No special difficulties are encountered in the first few steps which are outlined
below:

O(e) problem
f*o[zﬁi"] = 0. (4-7)
The first order stream function is assumed to be of the form
U¥F = ReDFV(Y, X, T) et (4.8)

and, consequently, @F® satisfies the ordinary differential equation

L*O[@F0] = 0, (4.9)
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NONLINEAR STABILITY OF FREE SHEAR LAYERS 655

where the following notation has been introduced

L*(n)[¢] = 6?4 in Y?)]%’ n=12,.... (4.10)

This equation which frequently arises in viscous critical layer theory admits four independent
solutions

ix—ty py . A"ty pu @
fo fo«/tH%)(%ti)dtdu; fo fthH% (3¢%) dt du; (4.11)

The third and fourth solutions, however, cannot possibly be part of the inner solution since they
increase exponentially at + oo and — co respectively. On the basis of these remarks, the first order

solution is found to be
UF = Re A(X;, T;) et. (4.12)

The governing equations and final solutions of the next three problems readily follow:

O(e%) problem

Luol¥3] = =22, (4.13)
Ul =274 (4.14)

O(e?) problem
Lra¥t] = YReid ek, (4.15)
Yt = —37*Re A(X,,T)) c. (4.16)

O(€?) problem
Lro[¥E] = 8AT, (4.17)
Ui =LY5+a® + Real® e — L Re 422, (4.18)

where af” and af") are the constants defined in the outer problem. Application of the matching
principle at this order immediately shows that they have the same value above and below the
origin so that

a0+ = o~ = a2, (4.19)
AP+ = P~ = afd. (4.20)

The next four steps of the inner study involve a lot of straightforward algebra. However, our
purpose here is not so much to analyse the characteristics of the critical layer for themselves, as it
is to derive the jump conditions pertaining to the outer problem. In certain cases we will therefore
be satisfied with the determination of the asymptotic behaviour of the solutions for large ¥, which
is all that is needed in order to apply the matching principle.

O(€%) problem
Lyalyt] = —Re( aafi +INA+§ATY) ¥, (4.21)

Matching of the mean flow terms suggests a solution of the form

Yt =bPY+Re®f(Y, X, T;) €k, (4.22)

where P = pP— = pP (4.23)
and @@ satisfies the differential equation

L*O[@FM] = — (2% +3A4 +314Y 3) (4.24)


http://rsta.royalsocietypublishing.org/

A
‘/\

A

'
A A

JA

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

656 P.HUERRE

By analogy with the work of Graebel (1966), we introduce the function

f f (£)) dtdu, (4.25)

where Gi(z) is defined by Luke (1962) to be a particular solution o:
(d?/dz*—z2) Gy(z) = —n.. (4.26)

A suitable solution of (4.24) which does not increase exponentially at ¥ = + oo can then be
written as follows

N
;) Y] +m) +n) Y, (4.27)

BIO = AV A1 +1y3) (aa? +4AA) [(
where m{’ and 7{" are unknown constants to be determined by matching. By making use of
Luke’s asymptotlc formula for the integrals of Gi(z) and Ai(z), one can show that

w(z) ~;Zt—[lnz+13~ In 3 +2y — 3 +in)

3~ . 11
z (1—14/3) +§2§+...} as |z| »o0—m <argz < in.  (4.28)

I

If we then only consider that part of the stream function which is associated with the funda-
mental, the outer expansion of the inner expansion carried out to order €% included, and rewritten
in terms of the inner variable Y reads

O(e3) outer [O(e%) inner fundamental]

54Y4 04
= -1 24 (1) -2
Ae—3AY?2e5+al e +{ o —2i [E)T

4/\A] [3n8+2y+3in—InA)+InY]Y

a4 3-8(1—1y3) (A\}
(1) 1) _ _ b a

Comparison with formula (C 11) leads to the jump condition
b+ — bV~ = n(0A /0T, + 42 A4) (4.30)
and enables us to determine the value of m(l’ and n(l) The final result is

54Y4
24

04
o073

D0 = i (94 + 4/\.4) Ylne4+242"

3T, —6iIAAY —mAS (1 +14/3) (

+ 4/\A)

x{w[(%)%Y]—3— }(‘%I)J?’) 6n1A1(¢3+1 ) (In 342y —3 —InA) Y} (4.31)

This completes the problem of O(e%).
O(e?) problem. The general solution is taken to be of the form

s = ReFO(Y, X, T;) +Re PZV(Y, X;, T) e + Re DFP(Y, X, T7) €*¥, (4.32)
where the mean flow change of O(e3) satisfies the following equation
PO T 04 i\#
3 — ,_4_ 4 A :
N = AT (14+iy) (aT +4/\A) [(A) Y] (4.33)
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and has to match with the expression (C6) at ¥ = + co. By using the same method as in the
problem of O(e3), one obtains the solution

1778 Wty 1 (0]4]?
O = Ll —
o} ) ( 4AA)f w(t) di— e s ( S+ SAA) )
274 ©|A]2 ! ©|A]2 2 9 1(,0+ 4 0)— 2
~ 3 oF, Y [m( oT, +82|4| ) (Ine—In3—2y+InA+2)+ 4 (et +cf )] Ye.
(4.34)
Matching with the outer flow also yields the jump condition
1 0|42
(Ot _ 00—
TR T TRX, (4.35)
The contribution @§® to the fundamental is governed by the equation,
L*O[@F0] = (iafP —204/0X,) Y, (4.36)

subject to the matching condition (G 12). It is given by
DFV = — (af +i04/0X,) Y2 (4.37)

Finally, the first harmonic is determined by

\}
L¥O[OF0] = —iY —- T (14iy3) (g‘; +8/\A2) [(;) Y], (4.38)
subject to the matching condition (C 17) and is found to be of the following form
A?Y% m(1—i./3) (042 i\#
*Q@) — —_ 2 =
oo = 2 o (aT1 184 ) [(A) Y], (4.39)
where w,(z) is the particular solution of
d4w d2w , <0
ﬁz_‘ll 22— — = Gj(z) +1d}(z) (4.40)
which is such that
-1
wy(2) ~ ﬂ;—(l +—;—;—3+) as |z] >0 —m<argz< in (4.41)

O(€®) problem. 1t is convenient to write the solution in the form
¥§ = ReP§O(Y, X, T;) + Re D3 WV(Y, X, T;) e
+Re D5O(Y, X;, T;) e + Re DFO(Y, X, T;) 35 (4.42)
where the mean flow terms obey the simple equation
0*DF0 /0Y4 =0 (4.43)

together with the matching condition (C 7). The solution is

0P 19|42 b dal
*(0) — (0) 20 , 2 2 3
P50 = a +6/\(6X1 19%, ToT, aXI) Y (4.44)
and the following identities are derived by matching with the outer flow
PO)+ - 0
oPQ*T  oP{~-  oPY) (4.45)

oxX, oX, oXx,’

O = g = a. (4.46)
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The fundamental @§® is determined by the equation

AAY? ( 04 04
+

L*O[FD] = $LiAY5 — o1}

; o +4/\A) Y21n6+3yz(

+ 4/\A)

n/\%

(Y3 +i )(§ﬁ+4AA) Yow ”[(A)%Y}+n)t%(\/3—i (%HAA)Y

><{w[(l)%r Y]— SHU—YS) L3 (ns+2y—3—InA) Y}

p) '@ 6k
+omAb(1—i3) (%%+4/\A) [(;)%Y]—“);—§{ +iy3) Az(gﬁl 4M)

xw[@yJ —iy3) ;A|2(—+4AA) [(j\)%Y]}+nA—%(1~iJ3)

<57 (57 + 424) u [(;)y]#ﬁ —iy3) 4| g sae|uf [(;)*y]

(4.47)
subject to the matching condition (C13). It js very tedious but straightforward to show that
@3 is the particular solution of (4.47) which, as |Y |- oo, admits the expansion

a4 ad i
1) N — 1 i
BED ~ — LAV [51AA o (aT +4/\A) (aT +4AA) (31n6+  ln Y)] Y

o (2 o4 VTR T
_[ s (aTl+4/\A) T (6T+4AA)+ A( +82]4] )] [§lne+§+1n y]

a:(sl)-l—_'_aél)** ——1— 7_11: -

T E— +0 7a when — 5 <argY<E. (4.48)

In the matching procedure, one also obtains the jump condition

. 0 (o4 16A (04 A4 (0]4]2
O+ _ 0~ — _
af af 11t[ aT( +4/\A) 3 (OT /\A) 2/\(6T1

| e

The first harmonic satisfies the homogeneous equation

L*O[GFA] = 0 (4.50)
which, after matching yields O} = g (4.51)
and ad* = g~ = a®. (4.52)

Finally the second harmonic @5® is given by

L*O|pE®] = _i —14/3) _|_ 24,\Aa) " (_1_)% yJ (4.53)
aTl A )
and the matching condition (C 1). One can show that the solution is
sg — T (047 3w, | (£)} ®
o9 = 2 () [ (1) ] ()

where a{? is a constant which could be determined by solving the corresponding outer problem
(3.29), and w,(z) is the particular solution of

d*w, _3, d?w,

- = ull(2) (4.55)


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

| A

”/\\ \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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which admits the asymptotic expansion
-1
wy(z) ~ ~sast when |z] > 00; —7 < argz < §m. (4.56)

O(e*") problem. Fortunately, we shall only need to examine the fundamental and 1st harmonic
part of the solution. The fundamental is governed by the following equation

, 04
T,

Lro[@r0] = 228 o4 7 A%_zmgnyumm (%“Tz +4a w)
. 1 0P® 1 OA]F 1 3P 1 A

_ @, L 9 1 1 065" 1 day
2 (b2 +2/\ X, T8 0X, Tax o, T 2A aXI)

— oni a?z (aa;f 4/\A) ( A)% Yo’ [(-;)% Y] (4.57)

and the matching condition (C 14). It is easy to determine the asymptotic behaviour of Q’_{S) as
| Y| - coand to deduce its outer expansion. The outcome of the calculationsis the jump condition

o (o4 04 (oafp
@)+ 1)—- — 2 1)
B+ p— — n[aX (aT 4/\A) i ( -+ 4 )
{ OP®) 1 OJAF 1 06 1 a®
(0) ol 200 el el 2 - 2
+63 +2/\ ox, TeAox, Taaor, 2 aXI] (4.58)

which is the relation that was needed to complete the derivation of the second amplitude equation
(3.25).

In order to derive the jump condition pertaining to the 1st harmonic it is sufficient to know its
asymptotic behaviour for large |Y|. The leading order terms in the forcing term are such that

. 04
LAO[GFO] ~ 414275 — 4042 1 2 (5T— + 14/\A2) +0 (Y3) (4.59)
subject to the matching condition (C 18). The jump condition then follows as
04
bR+ b~ = (E)T 14/\A2) (4.60)

This completes the inner critical layer analysis. The main results are discussed in the next
section.

5. DIscUSSION OF THE JUMP CONDITIONS

A simple physical interpretation of the relations derived in the previous section is readily
obtained by considering the jumps in vorticity or velocity which occur as one crosses the critical
layer. For instance, the constants a”*, b+, 0PQ)*/0X, arising in the O(e?)-mean flow distor-
tion given in equation (3.30) have been shown to take the same value above and below the
origin. The constants ¢*, however, are related by equation (4.35) which can be written as
_194]

0+ _ O0)—
92 92 /\ aXl >

(5.1)

where Q@+ and Q~ are the values of the O(e2) mean vorticity immediately above and below
the critical layer. It may therefore be concluded that the mean velocity is continuous, but the
mean vorticity jumps by the amount given in (5.1). It is also interesting to notice that this
discontinuity only takes place in the case of spatially growing waves. Otherwise, it is zero.

55 Vol. 203. A
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660 P.HUERRE

In order to discuss the results pertaining to the fundamental, we find it convenient to assume,
without loss of generality, that the normalizing constant a{” is identically zero. Relation (4.30)
may then be cast in the following form

YO+ — Y- = (ysechy +sinhy) Ren(04 /0T, + 41 4) k. (5.2)

The O(e?) axial velocity ! is discontinuous whereas the transverse velocity »{" is continuous
across the origin. Similarly, the jump conditions (4.49) and (4.58) can be written as follows

_ . 0 (04 16A (04 A (0]4]?
O+ _ 00— — d £ 2) | et
¥ ¥ sechy Rein [2 o, (E)Tl + 4/\A) +—3 (OTI + 4/\A) +53 ( o, +82|4| )] e

. . [0 (o4 .04
+ (ysechy +sinhy) Rein [5——-& (a—Tl- + 4/\A) —167-—;2

{ 0P® 104 1 b 1 da®
©) 4 20 , il 2 - 2 i£
+(”2 *3A X, T8A oX, T oT, A E)XI)A]C : (5.3)

Hence the O(e?) contribution to the fundamental not only experiences a discontinuity in axial
velocity, but also in transverse velocity as evidenced by the presence of the 1st term in (5.3).
Finally the axial velocity of the 1st harmonic becomes discontinuous at O(e®) as shown by the

relation
PP+ — - = — In(sinh 2y + tanh y) Re (042/0T, + 14242) ek. (5.4)

The above results can favourably be compared with the work of Haberman (1972) which was
mentioned in the Introduction. Bearing in mind that in the present study, the Reynolds number
in the critical layer (1/Ac, in Haberman’s terminology) is O(e?) and that the neutral mode
becomes singular at O(e) only, one can easily establish that the O(e?) mean vorticity jump of this
investigation is perfectly compatible with the O(e?) change in mean shear of Haberman’s paper.
In the same manner, the O(e?) jumpin axial velocity and O(€?) jumpin transverse velocity become
respectively O(¢) and O(e?) in Haberman’s case. The necessity of a mean vorticity jump across
the critical layer has also been discussed in detail by Stewartson (1978) and Brown & Stewartson
(1978) in the context of a weak Rossby wave forced on a uniform shear flow. Brown & Stewartson
(1978) in particular, showed how for large A¢, this jump eventually spreads throughout the outer
flow by viscous diffusion. In the present situation, when we restrict ourselves to free spatially
growing disturbances, the same phenomenon occurs: the mean vorticity jump acts as a source
term in the mean flow distortion equation (3.19), thereby leading to its own diffusion away from
the origin under the influence of the viscous stress term — A3 /dy3. Furthermore, by comparing
the jump conditions derived in section 4 with the asymptotic behaviour of the outer solution close
to the origin given in appendix C, one may also conclude that, in most cases, it is legitimate to
interpret the logarithmic functions arising in the outer expansion by appropriately choosing a
branch which yields a —n phase shift as the origin is crossed from below. For the mean flow
distortion term, however, this ‘rule’ breaks down and nothing can replace the method of
matched asymptotic expansions. The jump in phase shift is a satisfactory concept as long as the
outer flow is inviscid and linear, but this is not the case here, as evidenced by the presence of the
harmonics and the viscous terms derived in § 3. We have therefore preferred to follow the sug-
gestion of Stewartson (1978) and interpret our results in terms of velocity and vorticity jumps.
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6. THE AMPLITUDE EQUATIONS AND MEAN FLOW DISTORTION EQUATION

The results of the inner analysis enable us to complete the determination of the amplitude and
mean flow distortion equations formally derived in §3. The 1st amplitude equation can im-
mediately be deduced from the substitution of (4.30) into (3.14) so as to read

04 2i 04

T aXl +4A4 = 0. (6.1)
In the same fashion relations (4.58) and (3.25) lead to the second amplitude equation
04 .04 04 8iA . _64__6_2_4 21 4 o4 1 al Al

4[(+= . 3PP 5. 0D
+§f_m sech ycothy( P +2sech?y % )dy

aqs(o) aztp(o) a(Dé") apgg 1 al A|2
+m[ 0y +2/1(6T ol X, |, T ox, T179x, )}A-—O. (6.2)

In the above relation, the integral arising from coupling with the mean flow must be inter-
preted in the manner described in (8.27) without taking into account singularities which may be
presentat the origin. Furthermore, the constants 5’ and a{) have been replaced by the equivalent
expressions 00 /dy|, and BP|,. Finally, the pressure gradient at infinity has been shown to take
identical values on both sides of the critical layer so that the mean flow distortion equation can
be written as

0 0 aq')(o) ) a@éo) aa(péo)
(a:r +tanhan) 7 —sech?y ax, —A_éy_‘r
0|4|? 0|42 0P
— Lsecht 2 2 4 g _ Y2
3sech ycothy( oT, +8A|4| ) — }sech?y oX, +12Asechty tanhy |4] X, (6.3)
where the vorticity — 020y /dy? must satisfy the jump condition
REPOT 1942
o =3 X, " (6.4)

We consider relations (6.1), (6.2), (6.3) and (6.4) to be the main results of this paper. When the
viscous parameter A is set equal to zero and one assumes that the amplitude is only a function of
X, and T, the amplitude equation of Benney & Maslowe (1975) is recovered in the form

04 2iod 4,
a—j-—,;—;t'm+—§t[z‘li A4=0 (6.5)

which for temporally growing waves reduces to the equations obtained by Schade (1964) and
Huerre (1977). For reasons already stated in the introduction, it is felt that this simpler equation
does not fully describe the finite amplitude regime of weakly amplified waves in the viscous
critical layer regime since the corresponding transverse distribution of the fluctuations cannot
possibly be matched across the origin by a wiscous critical layer. We shall not attempt to find a
general solution of this set of equations but rather examine a few particular situations which will
illustrate their most important features. For obvious physical reasons, we will consider the more

realistic shear layer U(y) = U+tanhy, (6.6)
55-2
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where Uis an imposed constant velocity which may take any appropriate value larger than unity.

The previous relations can then be adapted to this profile by performing the translation

& = x— Ut where x is the new longitudinal coordinate. Similar transformations are applied to the

slow space scales X; and 7. For convenience, we shall keep the same notation and write

od od
67—,1+<U )aX1 40 = 0.

., from the inviscid neutral wavenumber by a small amount fe

ag LL

\ \\\

(6.7)

In the case of temporally growing waves, we assume that the wavenumber is given and differs

K=1-—pe. (6.8)
The first order fluctuation is then cast in the following form
Yy, = sechy Rea(Ty, X,, T,) el —Fele=Uh), (6.9)
where the amplitude function a(Ty, X,,T,) is related to the initial A(X;,7T5;) by
A(X;,T3) = a(Ty, Xy, Tp) €700, (6.10)
_ Substitution of the above expression into the first amplitude equation (6.7) yields
0
da  2(2An—-p)
gt a0 (6.11)
Hence, to leading order in ¢, the temporal amplification rate is
5= 2220 0y o) (6.12)
or, in terms of the wavenumber K and Reynolds number &,
2l _K)e
S, _n(1 7 K)+0[(1 K)?. (6.13)
The linear amplitude equation (6.7) is therefore solely associated with finite Reynolds number
effects. Whereas the inviscid neutral wave number is unity, the true neutral wavenumber
|
) K, = 1-21/R+O(R™2) (6.14)
has been shifted towards lower wavenumbers. This is entirely consistent with the numerical
results obtained by Betchov & Szewszyk (1963) and reproduced in figure 1. The slope of the
amplification rate curve is however unchanged at this order.
In the case of spatially growing waves, similar results can be obtained by suitably choosing
the dependence of 4 on 7 so that the nondimensional frequency § is real and within O(e)
of the inviscid neutral frequency U. It is then found that the real part K, of the wavenumber
and the spatial amplification rate K; are respectively given by
1 4 2n
s K,=m[&—é(l R)—!—US]—!—O(U S)3, (6.15)
_ 2U1-2n/R-S/U 0
Ki_—? W+O(U_S) . (6.16)
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The true neutral frequency S, experiences the same downward shift as in the temporal case
S, = UK, = U(1-2n/R)+ O(R%). (6.17)

From the above comments, we conclude that the 1st amplitude equation accounts for the fact
that the Reynolds number is not infinite but O(e™?).

We are ultimately interested in wavenumbers and frequencies within O(e2) of the true neutral
wavenumber or frequency, and in the ensuing discussion of the mean flow distortion equation and
second amplitude equation, we choose the solution of (6.7) which is associated with the neutral
wavenumber K, and such that

;= sechy Re b(X,, T}) e-2AnXi=UTy) (6.18)
or A(X,T)) = b(X,, Ty) e-2Xs-UTy, (6.19)

Since, in this case, the fluctuations are neutral with respect to their dependence on X, and 77,
the mean flow vorticity is continuous at the origin (see equation (6.4)), and the mean flow
distortion equation (6.3) reduces to

3¢H(0) 10))
PP _ 4sechty(cothy — 3 tanhy) |6(X,, T) |2+~ ke

(6.20)

Toyp AOX; T
The corresponding longitudinal velocity is then found to be
QDO
6y2 = [4yIn |tanhy| +sech?y tanhy + 4 tanhy
1 PQ
—4x,(tanh )] [6(Xo, Ty) [P+ 53 55 o, 2y tyy +a, (6.21)

and « and y are arbitrary functions of the slow variables which take identical values on both sides
of the critical layer. These quantities are to be determined by imposing appropriate boundary
conditions at y = + c0. The basic mean velocity tanhy is bounded as y goes to infinity, and in
order to preserve the validity of the outer expansion for large y, it is legitimate to require that the
mean distortion velocity be also bounded. It will, therefore, be assumed that vy is identically zero,
i.e. that the mean distortion vorticity is zero at infinity. In order to specify 3D /dy uniquely, we
will further assume that the mean pressure gradient vanishes at infinity and that the net mean
mass flux is not changed by the introduction of the fluctuations. Under these assumptions, the
axial velocity is given by

0D /3y = [4yIn |tanhy| +sech?y tanhy + 4 tanhy — 4x,(tanh y)] /0(X,, T5) |3, (6.22)

and the associated stream function is

tanh
P = [2f " y(ﬂ-;llﬁ dt+2y21n |tanh y| — 4yy,(tanh y)
1

+41n (2 coshy) —%sechzy] |6(X,, T) |3, (6.23)

One may notice that, in this instance, the requirement of zero longitudinal velocity at infinity
is incompatible with the mean flow distortion equation.

The form of the distorted mean flow profile is displayed in figure 2. It can be compared with
the corresponding result of Maslowe (1977) for finite Reynolds numbers. Whereas Maslowe’s
expression for the mean distortion behaves like R~ for large Reynolds numbers, it is, in the
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context of the present study, independent of R as R —> co. Bearing in mind the choice of boundary
conditions made earlier, the velocity is zero at the origin and stays constant at infinity. One also
notes that the infinite slope at the origin is due to the logarithmic singularity in the outer expan-
sion. An expression which is valid in the critical layer is given by equation (4.34). Furthermore,
the mean velocity distortion is antisymmetric as long as the fundamental wavenumber is within
O(e?) of the neutral wavenumber (6.14). If the wave is allowed to grow in time or space according
to (6.13) or (6.16), the mean flow distortion equation (6.3) does not reduce to the simple form
(6.21) and one obtains a much more complicated distortion of the mean flow.

2
1.._
oY
S
5
=]
S
5
S 1 | ] | ]
g-15 —10 —05 0 05 10 15
g
2
<
&
—1—
._2_..

longitudinal velocity, U

Ficure 2. Mean flow distortion.

Having restricted the form of the amplitude function to (6.19) and calculated the function
@, itis straightforward to derive the evolution equation pertaining to 4(X,, ;) from the general
equation (6.2). One finds that 5(X,, T;) is governed by

0b 21\ 00 16A%[47 x? 16
= i) I AT Rl L — 2L 2l p =
e+ (U-2) - [3-F — o[- Tenmlels o (.29
where x3(1) is given by (3.26) or equivalently
® 1
X3(1) = kgo'(Q—k—_'_——l-)—a = 1.0518. (6.25)

After a suitable U translation along the x axis, this equation can be directly compared with
Benney & Maslowe’s result (6.5). In this earlier investigation, the third linear term in 4 is
absent. As we shall see shortly, it corresponds to the O(R~2) change in neutral wavenumber. The
crucial nonlinear term determining the Landau constant has changed sign, and this is solely due
to the effect of the mean flow distortion coupling termin (6.2). The evolution equations pertaining
to time or space growing waves can be obtained from (6.24) by following the same procedure as
for the first amplitude equation.
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For temporally growing waves, the linear neutral wavenumber of (6.14) can now be expanded
to O(R2) to read

K, = 1-%+£—2(3’§—’§- (1))+0(R3) (6.26)
When the real wavenumber K is within O(e?) of K,, and such that
K =K,—AKe?, (6.27)
the temporal amplitude ¢(7}) defined by
Yr; = sechyRec(T5) exp {i(K, — AKe?) (x— Ut)} (6.28)
satisfies the following evolution equation
de/dT, = (2/n) [AK +8(3 + x5(1)) |¢|?] e. (6.29)

Below the neutral wave number AK > 0, there is no equilibrium amplitude since the non-
linear term is destabilizing. Above the neutral wavenumber AK < 0, a threshold amplitude

exists
[ JAK] 7E
= s (6.30)

Oscillations will grow in amplitude above this threshold and decay below.
Similarly, in the case of spatially growing waves, the linear neutral frequency becomes to O(€?)

S, = U[l—%‘+m(47 = 4;(3(1))] ( ) (6.31)

and the spatial amplitude function f(X,) associated with the frequency
S =8, —ASe? (6.32)
and defined by Yy = sechyRe f(X,) exp {iK, (v — Ut) +1ASe?t} (6.33)

obeys the amplitude equation

The imaginary terms on the right-hand side of (6.34) correspond to a change in phase speed of
the wave. The magnitude of the complex amplitude f'satisfies the equation

M o s S+ UG+ (1) LI LA (6.3
Here again there is no equilibrium amplitude but a threshold amplitude exists above the neutral
frequency.

It can, therefore, be concluded that the mean flow distortion contribution to the Landau
constant is positive and larger in magnitude than the 1st harmonic negative contribution. Hence,
the total Landau constant is positive and leads to further amplification of linearly unstable
temporal or spatial waves.

It should be emphasized that this conclusion does not depend on the particular choice of
boundary conditions made earlier in order to specify the mean flow distortion uniquely: the
general solution of the mean flow distortion equation, as given by (6.21), depends on three
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arbitrary functions 0P§%) /0.X;, ¥ and a. It can be readily checked that a nonzero pressure gradient
at infinity or a nonzero value of @ would not affect the mean flow coupling term in the amplitude
equation (6.2). The only term which might contribute to the mean flow coupling term arises from
the arbitrary function 7y, but it was shown that v must be zero if the longitudinal mean flow
distortion velocity is to be finite for large y.

The result of the present investigation sharply differs from previous studies and in particular
from earlier work by the author. In all these instances, however, the mean flow distortion was
effectively assumed to be zero. At first sight, we also seem to disagree with the comments of
Stuart (1960) regarding the sign of the part £; of the Landau constant which arises from the
distortion of the mean motion. Stuart showed that £, is always negative. Indeed, by specializing
his equation (6.3) to the situation which concerns us here, &, takes the form

€

k= T 16Xk, |A]*

+oo . , , .
f_ 3 [@{D’@él) — @ﬁl} P + DY (5{1) _ (Dél) @il)]2 dy, (6.36)
where the tilde denotes the complex conjugate. @V is the fundamental eigenfunction 4sechy
and £, is the energy of the fundamental wave

+ o

b= g 1001+ |0 dy (6.37)
The above expressions are obtained by applying the energy method, and in this context, &,
represents the work done by the O(e3) Reynolds stresses on the mean flow distortion @§. More-
over, since £, is O(€), it will only appear in the 3rd amplitude equation governing the variations
of A with X, and 7. In fact, the mean flow distortion terms in the second amplitude equation are
not associated with £;, but, in Stuart’s terminology, with the part £; of the Landau constant
arising from the distortion of the fundamental. More specifically, the O(¢?) mean flow change
induces an O(e?) distortion of the fundamental and the work done by the corresponding O (e%)
Reynolds stresses on the basic flow U(y) is included in k3. According to Stuart, the sign of kg,
cannot be determined a priori. The present study shows that &4 is positive for a hyperbolic
tangent free shear layer at high values of R and low values of R¢.1.. In his numerical study of the
finite Reynolds number case, Maslowe (1977) indicated that the part of the Landau constant
pertaining to the harmonic was reduced by 43 9, from its inviscid value when R = 40. It could
also be of interest to study the variations of £, and k5 as the Reynolds number decreases. One may
note that, at finite Reynolds number £, will become of order unity and will therefore have a

stabilizing effect.

7. CONCLUDING REMARKS

Even though we have been concerned with shear layer Reynolds numbers of O(1/e¢), it has
been necessary to assume that the shear layer is parallel. For this purpose the O(¢) diffusive effect
of viscosity on the basic flow has been effectively neglected by introducing a suitable body force.
Such a difficulty would not have been encountered at large values of R..1, since, in this instance
the shear layer Reynolds number R can be made large enough to keep the basic flow parallel to
O(e?). The problem of mean flow growth has also been raised by Maslowe (1977) in connection
with his estimate of mean flow distortion at finite Reynolds numbers. When R is large and given
by (2.4), a proper basic flow defined by the stream function ¥ (y, X;) should obey the boundary
layer equation (a% o W ) oy Y o

o 3K, X, o) 3y oy (7.
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and it has been shown by Lock (1951) that this equation admits a family of slowly growing free
shear layer solutions of the form U (y/,/X;). In principle one can then use the same method as
Crighton & Gaster (1976) and seek a solution of the form

Y, = Re A(X,,T)) & (J’!f) 1ot T (7.2)
1

where O is a phase function and the local frequency and wavenumber are defined in the usual
way. In the linear problem, this formulation is very convenient. However, for the weakly non-
linear stability approach to succeed, one has to choose among the possible solutions of the linear
problem a wavenumber-frequency pair which is neutral for all X;. This is in general impossible
to achieve since a neutral solution at one station X; will be decaying further downstream
and growing further upstream. Hence there is an inherent difficulty in applying the weakly
nonlinear theory to slowly diverging flows.

Keeping in mind the parallel flow assumption, one can then state the main result of this study
in the following way: at low critical layer Reynolds numbers and high shear layer Reynolds
numbers, the change in the mean flow transverse distribution generated by Reynolds stresses
is such that weakly amplified waves do not reach an equilibrium amplitude as they evolve in time
or along the downstream direction. Correspondingly, linearly damped waves become unstable
if their amplitude exceeds a threshold level.

When compared with earlier work, this conclusion should not be viewed as resulting from the
introduction of an artificial body force. As stated in the introduction, a body force was also
implicitly present in all previous investigations, and the sign reversal of the Landau constant from
anegative to a positive value is solely due to the effect of the mean flow distortion. It must also be
emphasized that this result does not exclude the ultimate finite-amplitude equilibration of the
instability wave which is known to occur in experiments. It merely states that, for sufficiently
small amplitudes, the waves are not stabilized by weakly nonlinear interactions. However, as the
wave amplitude increases, the critical layer Reynolds number Rc 1. which is initially small also in-
creases so that nonlinear effects become moreimportantin the critical layer. As described in a later
study by Huerre & Scott (1980), this change in critical layer structure may in turn lead to a de-
creasein the amplification rate until the wave reaches an equilibrium amplitude. Indeed, Miksad
(1972) showed that, in the transition of free shear layers, Rc.1. increases from 10~ to 10 as the
instability wave grows along the shear layer and eventually reaches an equilibrium amplitude.

Hence, the equilibration stage only takes place at relatively large values of Rc.1.. As far as the
amplification of tailpipe disturbances in a fully turbulent jet is concerned, one may also expect
Rc.1. to increase like the § power of the fluctuation level. Absolute values of R.1. are likely to be
small since the effective viscosity is considerably larger than in the associated laminar flow. In
this context, it would be of interest to determine if the mean flow distortion is destabilizing for
two-dimensional or axisymmetric jet profiles, as it is for free shear layers.

This work also seems to imply that the regular inviscid equilibrium solutions of Stuart (1967)
do not result from the evolution of linearly amplified waves in the viscous critical layer régime.
This further supports the statement of Maslowe (1977) indicating that Stuart’s steady solutions
arise from the evolution of finite-amplitude waves in the nonlinear critical layer régime.

It is very likely that within the parallel flow approximation the formulation presented in this
paper can be generalized to finite values of the Reynolds number in the critical layer. Such a study
will provide valuable information concerning the evolution of finite amplitude waves at high

56 Vol. 293. A
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fluctuation levels. It will also lead to a detailed description of the critical layer for nearly neutral
waves when both viscosity and nonlinearities have to be taken into account.

The author is particularly grateful to Professor D. G. Crighton and Dr E. G. Broadbent, F.R.S.,
for their guidance and for many discussions during the course of this investigation. This work
forms part of a programme supported by contract from the Ministry of Defence (Procurement
Executive), administered by R.A.E. Farnborough.
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APPENDIX A

In this appendix, the mean flow correction equation is derived directly from the Navier Stokes
equations, in a manner which, it is hoped, will shed some light on its physical meaning. The
approach is very similar to the original energy method of Stuart (1958) which is formulated here
within the framework of the method of multiple scales.

Let $, & and 7 be the pressure and the £ and y components of the velocity nondimensionalized
with respect to the length scale and velocity scales defined in § 2. The Navier Stokes equations
then read as follows:

o op

@+'a—=0, (A1)
o Od  _Od 2
§+ua—g+v-a—y—- ag+)le:V i+, (A2)
oy _of _op ap o
a—t+u55+va/ +A€V v, (A3)

where fis the body force introduced in the first order outer problem and defined by equation (3.3).
As in the rest of the study, the dependent variables may be expanded in powers of ¢ in the
following way

a=U(y)+eu® &y, X, T) +2[UP(y, X, T) +us” (&, y, Xp, i) +ufP (€, y, X, T)] +... (A4)
ﬁ = vﬁl) (g, .7/: ’L’ ’&) 62 [v(l) (g, y? ’L’ ’L) v(2)(§3 _Z/s )] + 63 [V(O) (y’ Xw 7’;) + ] + M (A 5)
= AP+¢m@w,i,»+w%P9@ynJD+‘”@4gnﬂd+#”@w,1,J]+ (A 6)

In the above expressions, the (0), (1), (2) and (3) superscripts characterize the mean flow
change, the fundamental, first harmonic and second harmonic fluctuations respectively. Multiple
scales have also been introduced so that /0t and 0/0£ admit expansions in powers of ¢ as given by
equation (2.7). After substitution into the Navier Stokes equations and averaging over a wave-
length of the neutral wave, it is easy to show that the leading order mean flow correction
equations are

U U  minpo _ UL PP 3 im0 7o
’a—n—_'_U(!/) aX +U( )V3 =A ayz _aXl_ay(ul U + Uy vy )_aXI(ul ) (A7)
T~ (A

The interpretation of these equations is well established in the literature on the subject: the
mean flow change is determined by the action of viscous stresses, Reynolds stresses and mean
pressure gradient. The second equation of motion (A 8) may immediately be integrated with
respect to y, and the change in mean pressure is given by

PP(y, X, T)) = — ()2 + PR*(X,, T)), (A9)
where P)+(X,,T;) is the mean pressure change at infinity, the + and — signs pertaining to

y = 400 and y = —oo respectively. Substitution into the first equation of motion (A7) then
yields the single relation

ouP oUuP 2UP PYE 0 ——— s O s
Tt U@ g + UG = A~ o T+ D) — o () - )]

(A10)
56-2
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which is identical to equation (3.18). This procedure, however, allows us to identify un-
ambiguously the constant «(X;,7;) of equation (3.18) with the mean pressure gradient at
infinity 0P /0.X,.

AprPENDIX B

The forcing terms pertaining to @5 and @ are

W (y, X;, T;) = 2{sech3y cothy — (ysechy +sinhy) In |tanh y| +sechy y,(tanhy)}

0 (04 N
an (OT +4/\A) —sechy(1 + 2sinh?y) — axX

—12Asechy tanhy(1 + 4 sech?y) E%Yii + 2sech?y coth y{sechy cothy
04

0
— (ysechy +sinhy) In [tanh y| +sech y y,(tanh y) }E)T (E)T

y o4 _ 4A sech?y{sech®y coth*y
o7,

+ 2 cothy(1 —3tanh?y) [(ysechy +sinhy) In |[tanh y| —sechy y,(tanhy)]

+ 4/\A)

—2sechy tanhy ﬁ% —36Asech?
1 1

+4coshyln|tanhy[+Gsechy}{ A+4/\A}+144/\25ech3 (5tanh?y—3) 4

0
_2ise‘3hy§;¥4—2isech3ycothy% +sechycothy( y3 +2sech2ya§; )A
2 2

+3%sechby | 4|2 4 — 8idsech®y cothy[(1 — 3 tanh?y) af’* + {y(1 — 3 tanh?y)

0X,

dagh+ b=
—2isech?y cothy [sech Y G)T + (y sechy +sinh y) 3T, ]

04§ W+ ab(l):l:
+ 3 tanhy} bP+] — 21 [sech Ay X + (y sechy +sinh y) ]

QP (y, X;, T;) = LHsech®y[4sechycothy +sechy coth®y — 4(ysechy +sinhy) In |tanh |

+4sechy y,(tanhy)] (g}{ + 8/\A2) +isechty % —45iAsech*y tanh y4?

+ 6iA sech?y coth y 42 + 2a§P* 4 sechy + 2b{"*+ 4 sech? y (y sech?y + tanh y). (B 2)

AppENDIX C
In this appendix are tabulated the inner expansions of the outer expansions which have been
calculated in §3. For convenience, the outer stream function has been split into four parts,
namely, the mean flow, the fundamental, the first and second harmonic. The corresponding inner
expansions rewritten in terms of the inner variable Y are presented in tables 1, 2 and 3. The nth
row of each table displays the O(¢"/3) inner expansion of the O(e™3) outer expansion. The results
pertaining to the second harmonic are very simple and reduce to

(C1)

O(e™®) inner [0(6”’3) outer 2nd harmonic] = {0 when 7 < 8}

348 when n=9


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

g0 Ot WS

N
y A\
{ B

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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TaBLE 1

O(eflf”) inner [O (6%") outer mean flow]

LR (C2)
1723

1veef - vied (C3)
1v2ed — Lyt

1Y2%8 — L V4% + (0% + 5 Y6) e (C4)
17263 — LYk + (0% + K V6) 24 b0 Ves (C6)

1 Yze%—-—-Y"c% + (a0 + 5 V6) €2+ bO+ Yes

8

+{2égoys+[«»i+ A(GIAI +8)([A|2) (ln[Y|+llne):| YZ} 3 (C6)

1 Yze%—-—~Y4€%+ (a(l));l: LYo e+ b(o):i: Y63
A
+{2520Y8+|: (°)i+4/\ (al | +8/\1A|2) (In IYI+%1n€):| Y2}

1421 o [ o, 1 PP+ 12|4]* P+ 2P+
- - - :_ _ y3es c7
3% 0X, Yes+{ +6)(( ox, taox, tor, ox, (@7
TABLE 2
0(e¥7) inner [O(e¥™) outer fundamental]
Ade (C8)
Ae
Ae— LAY %3 (C9)
Ac— LAY %3 + aP+e? (C10)
Ae—3AY %5 +aD*e?
. e o4 o4 2
+irAY A+ | 2000% — 6idd+i| 5 +4A4 ) —2i | ===+ 424 (In |Y |+ iIne) es (C11)
AT, 3T,
[IF8
0(6%) inner [O(e%) outer fundamental] — (a ) aﬁ;l) Y2ed (G12)
1,
0(e3) inner [0(¢3) outer fundamental]
04 1 04
—2A AWPA)—€® S81 Yy ——
2 (aT1+ A ) € +{ 750 +[5)(A 18(6T1+4)(A)
b= 24 d (o4 16A (04
—_— 4 1] Y 3 Mt — = —_—
3 (8T+ )(A)( ne+ln| |):|Y +af [zaTl(aT 4)(A)+ 3 (aT1+4)(A)
0|4
+§i( 4P +8/\[A|2) :I[glne+ln|Y|]} (C13)
O(e®) inner [O(€?) outer fundamental]
04 0 (04 04 Qa+
Sy J ) ys 2p & —_ 2 [¢0FS
+{(24 a +66X) +|: b +{ 6X1(6T1+MA) 2ir 21(6T +4Ad§ )
1 0P®: 1 0|A]2 1 6P+ 1 a0+ 10
)+ et ot 2 = 2 1o
(b Y ST RAE T B A aXI) }{glne+ln|Y|}] } gL (C14)
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672 NONLINEAR STABILITY OF FREE SHEAR LAYERS
TABLE 3
n O(e%") inner [0(6%") outer 1st harmonic]
3 0
4 0
5 0
6 — }A%? (C15)
7 — 1A%
8 — A% 4 JAPY %65 (C16)
9 et paevebel (?—4—2-+ 8)(A2) Loty oo (C17)
s\oT, Y
0 e erd ()b
+ {—%A2Y4+ [3b§2)t +i (g§+ 14/1A2) (%,;lne+ln]Y|):| Y: €% (C18)
1
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